Annual Foundation School - I (2024), IIT Hyderabad

Module 3 - Linear Groups - Tutorial Sheet 1

Date and Time: December 16, 2024, 2:30 PM - 3:30 PM

Dr. Neeraj Kumar, Department of Mathematics, IIT Hyderabad

Q.1. Let $G = \operatorname{GL}_n$ and $X = \operatorname{M}_n$ over \mathbb{R} or \mathbb{C} . For $P \in G$ and $A \in X$, prove that the operation

$$P \cdot A := (P^t)^{-1} A P^{-1}$$

defines a group action of G on X. The orthogonal group is defined as $O_n = \{P \in GL_n \mid P^t P = I\}$. Show that $O_n = Stab(I)$.

Q.2. Let $G = \operatorname{GL}_n(\mathbb{C})$ and $X = M_n(\mathbb{C})$. For $P \in G$ and $A \in X$, prove that the operation

$$P \cdot A := (P^*)^{-1}AP^{-1}$$

defines a group action of G on X.

(i) The unitary group is defined as

$$U_n = \{ P \in \operatorname{GL}_n(\mathbb{C}) \mid P^*P = I \}.$$

Show that $U_n = \operatorname{Stab}(I_n)$.

(ii) Show that $U_1 = S^1 = SO_2(\mathbb{R})$.

Q.3. Find a subgroup of $GL_2(\mathbb{R})$ that is isomorphic to \mathbb{C}^{\times} .

Q.4. Prove that for every $n \in \mathbb{N}$, $\operatorname{GL}_n(\mathbb{C})$ is isomorphic to a subgroup of $\operatorname{GL}_{2n}(\mathbb{R})$.

- **Q.5.** Identify a group G that is isomorphic to $\operatorname{GL}_n^+(\mathbb{R})$.
- **Q.6.** Show that $SO_2(\mathbb{C})$ is not a bounded set in \mathbb{C}^4 .

Revision from the Lecture Notes.

Q.7. Using the standard real inner product on \mathbb{R}^n , deduce that for any $n \times n$ matrix P,

$$\langle v, w \rangle = \langle Pv, Pw \rangle \implies P^t P = I_n.$$

Prove that $O_n(\mathbb{R})$ is a subgroup of $GL_n(\mathbb{R})$.

Q.8. Using the standard Hermitian inner product on \mathbb{C}^n , deduce that for any $n \times n$ matrix P, $\langle v, w \rangle = \langle Pv, Pw \rangle \implies \overline{P^t}P = I_n.$

Prove that $U_n(\mathbb{C})$ is a subgroup of $GL_n(\mathbb{C})$.

2. Additional Problems

Q.9. Show that for any $n \times n$ matrices A and B over \mathbb{R} , one has $\det(AB) = \det(A) \cdot \det(B)$.

Q.10. Let H be the linear groups,

 $SL_n(\mathbb{R}), SL_n(\mathbb{C}), SO_2(\mathbb{R}), SO_2(\mathbb{C}), SU_2(\mathbb{C}), GL_n(\mathbb{R}), GL_n(\mathbb{C}).$

Answer the following for each linear group H and make a table with Yes/No.

- (i) Is *H* connected?
- (ii) Is H path-connected?
- (iii) Is H simply connected?

Annual Foundation School - I (2024), IIT Hyderabad

Module 3 - Linear Groups - Tutorial Sheet 2

Date and Time: December 18, 2024, 2:30 PM - 3:30 PM

Dr. Neeraj Kumar, Department of Mathematics, IIT Hyderabad

Q.1. Let A be an $n \times n$ skew-symmetric matrix with variable entries x_{ij} . Prove that:

- (i) If n is odd, then det(A) = 0.
- (ii) If n = 2, 4, then det(A) is a square of some polynomial expression.

Q.2. Let $G = \operatorname{GL}_n$ and $X = \operatorname{M}_n$ over \mathbb{R} or \mathbb{C} . For $P \in G$ and $A \in X$, prove that the operation $P \cdot A := (P^t)^{-1} A P^{-1}$

defines a group action of G on X.

(i) Show that $\text{Sp}_{2n} = \text{Stab}(J)$, where J is the $2n \times 2n$ skew-symmetric block matrix:

$$J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}.$$

(ii) Show that $O_{3,1} = \text{Stab}(I_{3,1})$, where $I_{3,1}$ is the 4×4 diagonal matrix:

$$I_{3,1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Q.3. Prove that the following matrices are symplectic if the blocks are $n \times n$:

$$\begin{pmatrix} -I \\ I \end{pmatrix}, \quad \begin{pmatrix} A^t & 0 \\ 0 & A^{-1} \end{pmatrix}, \quad \begin{pmatrix} I & B \\ 0 & I \end{pmatrix},$$

where $B = B^t$ and A is invertible.

Q.4. Prove that $\operatorname{Sp}_2(\mathbb{R}) = \operatorname{SL}_2(\mathbb{R})$, but $\operatorname{Sp}_4(\mathbb{R}) \neq \operatorname{SL}_4(\mathbb{R})$.

Q.5. Let G be a group, and C(a) denote the conjugacy class of an element $a \in G$.

(i) Compute C(a) for $G = S_3$ and a = e, (1, 2), (1, 2, 3).

- (ii) Show that if $g \in Z(G)$, then $C(g) = \{g\}$.
- (iii) Compute $Z(SU_2)$, the center of SU_2 .

Q.6. Answer the following:

- (i) Is $O_n(\mathbb{R})$ a normal subgroup of $GL_n(\mathbb{R})$?
- (ii) Is $SL_n(\mathbb{R})$ a normal subgroup of $GL_n(\mathbb{R})$?
- (iii) Is $\operatorname{Sp}_{2n}(\mathbb{R})$ a normal subgroup of $\operatorname{GL}_{2n}(\mathbb{R})$?
- (iv) Is U_n a normal subgroup of $\operatorname{GL}_n(\mathbb{C})$?

Q.7. Show that the eigenvalues of a unitary matrix lie on the unit circle in the complex plane.

2. Additional Problems

Q.8. Let $H \in {O_n, U_n, Sp_{2n}}$ be a subgroup of the appropriate general linear group. Answer the following:

- (i) Is H an open subset of the general linear group?
- (ii) Is H a closed subset of the general linear group?
- (iii) Is H compact?
- (iv) Is H connected?

Q.9. Try rewriting the proof of the theorem discussed in the lecture.

Theorem. The conjugacy classes of SU_2 are precisely the latitudes Lat_c , where $-1 \le c \le 1$, defined as:

$$\mathbf{Lat}_{c} = \left\{ (x_{1}, x_{2}, x_{3}, x_{4}) \in \mathbb{R}^{4} \mid x_{1} = c \text{ and } x_{2}^{2} + x_{3}^{2} + x_{4}^{2} = 1 - c^{2} \right\}.$$

Annual Foundation School - I (2024) IIT Hyderabad

Module 3 - Linear Groups - Tutorial Sheet 3

Date and Time: December 19, 2024, 4:00 PM - 5:00 PM

Dr. Neeraj Kumar, Department of Mathematics, IIT Hyderabad

Q.1. Prove the following basic properties:

- (i) If v is an eigenvector of A with eigenvalue λ , then v is also an eigenvector of e^A with eigenvalue e^{λ} .
- (ii) Given the exponential matrix e^A , prove that conjugation by an invertible matrix P satisfies $P^{-1}e^AP = e^{P^{-1}AP}$.
- (iii) Let A and B be $n \times n$ matrices such that AB = BA, then $e^{A+B} = e^A e^B$.
- (iv) For any $A \in M_n$, prove that e^A is an invertible matrix.
- (v) For any $A \in M_n(\mathbb{C})$, prove that $\det(e^A) = e^{\operatorname{trace}(A)}$.
- **Q.2.** Determine the differentiable homomorphisms from $(\mathbb{C}, +)$ to $SL_n(\mathbb{C})$.

Q.3. Describe all one-parameter subgroups of $(\mathbb{C} - \{0\}, \cdot)$.

Q.4. Describe by equations the image of all one-parameter subgroups of the group of real 2×2 invertible diagonal matrices.

(Remark: Further, extend this to $n \times n$ invertible diagonal matrices (real or complex)).

Q.5. Let $\varphi : (\mathbb{R}, +) \to \operatorname{GL}_n(\mathbb{R})$ be a one-parameter subgroup. Prove that $\operatorname{ker}(\varphi)$ is either trivial, or the whole group, or else it is infinite cyclic.

Q.6. Find the conditions on a matrix A such that e^{tA} is a one-parameter subgroup of the special unitary group SU_n .

Q.7. Determine the one-parameter subgroups of U_2 . More generally, extend this to U_n for any n.

Q.8. If
$$A = \begin{pmatrix} 0 & 2\pi \\ -2\pi & 0 \end{pmatrix}$$
, then prove that the matrix exponential e^{tA} is given by:
$$\begin{pmatrix} \cos(2\pi t) & \sin(2\pi t) \\ \sin(2\pi t) & \cos(2\pi t) \end{pmatrix}.$$

Using this, show that the map $\varphi : (\mathbb{R}, +) \longrightarrow GL_2(\mathbb{R})$ defined by mapping t to e^{tA} is not an injective group homomorphism.

Q.9. Let $\varphi(t) = e^{tA}$ be a one-parameter subgroup of a group G. Prove that the cosets of $\operatorname{im}(\varphi)$ are matrix solutions of the differential equation $\frac{dX}{dt} = AX$.

2. Revision

Definition. Let G be a subgroup of GL_n . A one-parameter subgroup in G is a one-parameter subgroup $\varphi(t) = e^{tA}$ in GL_n such that $\varphi(t) \in G$ for all $t \in \mathbb{R}$.

Revision. Let $G \in \{O_n(\mathbb{R}), U_n(\mathbb{C}), SO_n(\mathbb{R}), SU_n(\mathbb{C}), SL_n(\mathbb{R}), SL_n(\mathbb{C})\}$ be a subgroup of the appropriate general linear group. Then, in each case, find conditions on the matrix A such that $e^{tA} \in G$ for all $t \in \mathbb{R}$ if and only if A satisfies the required conditions. Make a table for the above.

Group G	Condition on A
$O_n(\mathbb{R})$	$A^T + A = 0$
$U_n(\mathbb{C})$	$A^* + A = 0$
$\operatorname{SO}_n(\mathbb{R})$	$A^T + A = 0, \text{ trace}(A) = 0$
$\mathrm{SU}_n(\mathbb{C})$	$A^* + A = 0$, trace $(A) = 0$
$\operatorname{SL}_n(\mathbb{R})$	$\operatorname{trace}(A) = 0$
$\operatorname{SL}_n(\mathbb{C})$	$\operatorname{trace}(A) = 0$

TABLE: CONDITIONS ON A

Annual Foundation School - I (2024) IIT Hyderabad

Module 3 - Linear Groups - Tutorial Sheet 4

Date and Time: December 20, 2024, 4:00 PM - 5:00 PM

Dr. Neeraj Kumar, Department of Mathematics, IIT Hyderabad

Q.1. Answer the following:

- (i) Find $(A + B\epsilon)^{-1}$, where A is an invertible matrix. (Refer to textbook or lecture notes for the introduction of an infinitesimal element ϵ satisfying $\epsilon^2 = 0$)
- (ii) Prove that $\det(I + A\epsilon) = 1 + (\operatorname{trace}(A))\epsilon$.
- (iii) Compute $det(A + B\epsilon)$, where A is an invertible matrix.
- (iv) Compute the infinitesimal tangent vectors to the plane curve $y^2 = x^3$ at the points (1,1).
- (v) Consider the group

$$G = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} : x, y \in \mathbb{R}^{\times} \right\},\$$

where \mathbb{R}^{\times} denotes the multiplicative group of nonzero real numbers. Show that the subset

$$H = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \in G : xy = 1 \right\}$$

is a subgroup of G, and compute its Lie algebra.

\mathbf{S}	UMMARY	OF	Lie	Algebras	OF	Some	CLASSICAL	LINEAR	GROUPS
--------------	--------	----	----------------------	----------	----	------	-----------	--------	--------

Linear Group G	Lie Algebra, Lie(G)	$\dim \operatorname{Lie}(G)$	Defining Condition for A
$\operatorname{GL}_n(\mathbb{R})$	\mathfrak{gl}_n	n^2	None (all $n \times n$ matrices)
$\operatorname{GL}_n(\mathbb{C})$	$\mathfrak{gl}_n(\mathbb{C})$	$2n^2$	None (all $n \times n$ complex matrices)
$\operatorname{SL}_n(\mathbb{R})$	\mathfrak{sl}_n	$n^2 - 1$	$\operatorname{trace}(A) = 0$
$\operatorname{SL}_n(\mathbb{C})$	$\mathfrak{sl}_n(\mathbb{C})$	$2(n^2-1)$	trace(A) = 0
$O_n(\mathbb{R})$	\mathfrak{o}_n	$\frac{n(n-1)}{2}$	$A^T = -A$ (skew-symmetric matrices)
$\operatorname{SO}_n(\mathbb{R})$	\mathfrak{so}_n	$\frac{n(n-1)}{2}$	$A^T = -A$ (skew-symmetric matrices)
U_n	\mathfrak{u}_n	n^2	$A^* = -A$ (skew-Hermitian matrices)
SU_n	\mathfrak{su}_n	$n^2 - 1$	$A^* = -A, \operatorname{trace}(A) = 0$
$\qquad \qquad $	\mathfrak{sp}_{2n}	n(2n+1)	$A^T J + J A = 0$, where $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$

Q.2. Use three different definitions (approaches) discussed in the lecture to find Lie(G).